[1] BASHETTY S, OZCELIK S. Review on dynamics of offshore floating wind turbine platforms[J]. Energies, 2021(19): 6026. [2] 国家能源局. 我国风电光伏发电装机规模超过煤电[EB/OL]. (2024-08-02) [2024-11-10]. https://yz-jsjc-gov-cn-1416.res.gxlib.org.cn:443/rwt/1416/https/P75YPLUPMWRT635QPZYGG5C/2024-01/26/c_1310762246.htm. [3] 国家能源局. 国家能源局发布2023年全国电力工业统计数据[EB/OL]. (2024-01-26) [2024-06-23]. https://yz-jsjc-gov-cn-1416.res.gxlib.org.cn:443/rwt/1416/https/P75YPLUPMWRT635QPZYGG5C/2024-01/26/c_1310762246.htm. [4] CURTO D, FRANZITTA V, GUERCIO A. A review of the current technologies and perspectives[J]. Energies, 2021(20): 6604. [5] FRANKE K, GARCIA J F, KLEINSCHMITT C, et al. Assessing worldwide future potentials of renewable electricity generation: installable capacity, full load hours and costs[J]. Renewable Energy, 2024(226): 120376. [6] 中国政府网. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. (2021-03-13) [2024-06-23]. https://yz-jsjc-gov-cn-1416.res.gxlib.org.cn:443/rwt/1416/https/P75YPLUHN75C6Z5P/xinwen/2021-03/13/content_5592681.htm. [7] ZHOU B Z, HU J J, XIE B, et al. Research progress in hydrodynamics of wind-wave combined power generation systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019(6): 1641-1649. [8] HERONEMUS W E. Pollution-free energy from offshore winds[C]//Proceedings of the 8th Annual Conference and Exposition, Marine Technology Society, September 11-13, 1972. Washington, DC: Marine Technology Society, 1972. [9] HENDERSON A R, MORGAN C, SMITH B, et al. Offshore wind energy in Europe : a review of the state-of-the-art[J]. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 2003(1): 35-52. [10] HENDERSON A R, BULDER B, HUIJSMANS R, et al. Feasibility study of floating windfarms in shallow offshore sites[J]. Wind Engineering, 2003(5): 405-418. [11] RODDIER D, CERMELLI C, AUBAULT A, et al. Summary and conclusions of the full life-cycle of the WindFloat FOWT prototype project[C]//Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Volume 9: Offshore Geo-technics; Torgeir Moan Honoring Symposium, June 25-30, 2017 . Trondheim, Norway: ASME, 2017. [12] GOUPEE A J, KOO B J, KIMBALL R W, et al. Experimental comparison of three floating wind turbine concepts[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014(2): 020906. [13] 海能基.全球首个漂浮式海上风电场基础成功组装[J]. 农村电工, 2017(5):60. [14] QAISER M T, EJAZ J, OSEN O, et al. Digital twin-driven energy modeling of Hywind Tampen floating wind farm[J]. Energy Reports, 2023(9): 284-289. [15] 严新荣, 张宁宁, 马奎超, 等.我国海上风电发展现状与趋势综述[J]. 发电技术, 2024(1):1-12. [16] 李丽旻.风电开发挺进深远海[N]. 中国能源报, 2022-06-13(012). [17] 陆晓如.“观澜”有术, 绿电跨越深远海[J]. 中国石油石化, 2023 (8):43-45. [18] 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史, 进展与挑战[J]. 力学进展, 2022(4): 731-808. [19] TANAKA K, SATO I, UTSUNOMIYA T, et al. Validation of dynamic response of a 2-MW hybrid-spar floating wind turbine during typhoon using full-scale field data [J]. Ocean Engineering, 2020(218): 108262. [20] 高伟, 李春, 刘全. 深海漂浮式风力机的概念设计与气动—水动力耦合特性评述[J]. 能源研究与信息, 2011(3):168-173. [21] SU X, WANG X, XU W, et al. Offshore wind power: progress of the edge tool, which can promote sustainable energy development[J]. Sustainability, 2024(17): 7810. [22] LIU Y, LI S, YI Q, et al. Developments in semi-submersible floating foundations supporting wind turbines: a comprehensive review [J]. Renewable and Sustainable Energy Reviews, 2016(60): 433-449. [23] National Renewable Energy Lab. (NREL). Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-megawatt offshore reference wind turbine [R/OL]. (2020-07-01) [2024-11-02]. https://yz-jsjc-gov-cn-1416.res.gxlib.org.cn:443/rwt/1416/https/P75YPLUQPN4GTLUHN75A/biblio/1660012. [24] 国家能源局. 全球首台抗台风型漂浮式海上风电机组建成[EB/OL]. (2024-07-30) [2024-09-25]. https://yz-jsjc-gov-cn-1416.res.gxlib.org.cn:443/rwt/1416/https/P75YPLUPMWRT635QPZYGG5C/2021-07/30/c_1310097503.htm. [25] LEGAZ M J, CORONIL D, MAYORGA P, et al. Study of a hybrid renewable energy platform: W2Power [C]//International Conference on Offshore Mechanics and Arctic Engineering, June 17-22, 2018. Paris, France: American Society of Mechanical Engineers, 2018. [26] CHEN W, GAO F, MENG X, et al. W2P: A high-power integrated generation unit for offshore wind power and ocean wave energy [J]. Ocean Engineering, 2016(128): 41-47. [27] KANG H Y, KIM M H, KIM K H, et al. Hydroelastic analysis of multi-unit floating offshore wind turbine platform (MUFOWT)[C]//Proceedings of the ISOPE International Ocean and Polar Engineering Conference, June 25-30, 2017 . San Francisco, USA: ISOPE, 2017: 554-560. [28] 孙嘉忆, 明阳风电集团的16.6MW巨型涡轮机抵达广东[J].热能动力工程, 2024(9):154. [29] 张洪建, 蔡新, 许波峰. 浮式风机半潜式平台动力响应研究[J]. 可再生能源, 2021(9):1210-1216. [30] ZHAO H, WU X, ZHOU Z. Exploring motion stability of a novel semi-submersible platform for offshore wind turbines[J]. Energies, 2024(10): 2313. [31] 刘利琴, 韩袁昭, 肖昌水, 等. 新型浮式基础的海上风机系统动力响应研究[J]. 海洋工程, 2018(1):19-26. [32] DING H, HAN Y, ZHANG P, et al. Dynamic analysis of a new type of floating platform for offshore wind turbine[C]//ISOPE International Ocean and Polar Engineering Conference, May 19-24, 2024 . Rhodes, Greece: ISOPE, 2024. [33] OZKOP E, ALTAS I H. Control, power and electrical components in wave energy conversion systems: a review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2017(67): 106-115. [34] CLÉMENT A, MCROBERTS C, GORRELL B, et al. Wave energy in Europe: current status and perspectives[J]. Renewable and Sustainable Energy Reviews, 2002(5): 405-431. [35] SALTER S H. Recent progress on ducks[J]. IEE Proceedings A (Physical Science, Measurement and Instrumentation, Management and Education, Reviews), 1980(5): 308-319. [36] 赵金峰, 黄筱云, 陈理. 波浪能发电技术及研究现状[J]. 湖南水利水电, 2022(3):7-11. [37] 刘威, 时健, 张弛,等. 基于装置得分的北太平洋波浪能资源评估[J]. 中国海洋大学学报(自然科学版), 2024(7):63-71. [38] ZITTI G, BROCCHINI M. The role of size and inertia on the hydrodynamics of a self-reacting heave single point absorber wave energy converter[J]. Renewable Energy, 2024(229):120686. [39] 王立国, 游亚戈, 盛松伟, 等. 鸭式波浪能发电装置中蓄能工质的选择研究[J]. 太阳能学报, 2014(12): 2525-2529. [40] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022(1):1-12. [41] 廖静. 珠海“澎湖号”网箱平台:让养殖走向深远海[J]. 海洋与渔业, 2019 (11): 62-63. [42] BENDER A, SUNBERG J. Effects of wave energy generators on nephrops norvegicus [EB/OL]. (2018-09-24) [2024-11-02]. https://yz-jsjc-gov-cn-1416.res.gxlib.org.cn:443/rwt/1416/https/PSTYI4D3PMYHA5UPNRYGP55X/publications/effects-wave-energy-generators-nephrops-norvegicus. [43] 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017(3):30-37. [44] FALCÃO A F O. Wave energy utilization: a review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2010(3): 899-918. [45] WANG S, YUAN P, LI D, et al. An overview of ocean renewable energy in China[J]. Renewable and Sustainable Energy Reviews, 2011(1): 91-111. [46] ZHANG W, LIU Y, LI S, et al. Experimental and simulative study on throttle valve function in the process of wave energy conversion[J]. Advances in Mechanical Engineering, 2017(6): 16878140-17712365. [47] PÉREZ-COLLAZO C, GREAVES D, IGLESIAS G. A review of combined wave and offshore wind energy[J]. Renewable and Sustainable Energy Reviews, 2015(42): 141-153. [48] MENG F, SERGIENKO N, DING B, et al. Co-located offshore wind-wave energy systems: can motion suppression and reliable power generation be achieved simultaneously?[J]. Applied Energy, 2023(331): 120373. [49] STOUTENBURG E D, JENKINS N, JACOBSON M Z. Power output variations of co-located offshore wind turbines and wave energy converters in California[J]. Renewable Energy, 2010(12): 2781-2791. [50] WANG Y, LIU Z, WANG H. Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm[J]. Energy, 2022(239): 121850. [51] 海南省人民政府. 海南省人民政府关于印发海南省碳达峰实施方案的通知[EB/OL]. (2022-08-22) [2024-11-02]. https://yz-jsjc-gov-cn-1416.res.gxlib.org.cn:443/rwt/1416/https/P75YPLUIMFVX6ZLPF3UX87SPMNYA/hainan/szfwj/202208/911b7a2656f148c08e5c9079227103a7.shtml. [52] WAN L, MOAN T, GAO Z, et al. A review on the technical development of combined wind and wave energy conversion systems[J]. Energy, 2024(294): 130885. [53] GHAFARI H R, GHASSEMI H, HE G. Numerical study of the Wavestar wave energy converter with multi-point-absorber around DeepCwind semisubmersible floating platform[J]. Ocean Engineering, 2021(232): 109177. [54] RUSU E, ONEA F. A review of the technologies for wave energy extraction[J]. Clean Energy, 2018(1): 10-19. [55] AYUB M W, HAMZA A, AGGIDIS G A, et al. A review of power co-generation technologies from hybrid offshore wind and wave energy[J]. Energies, 2023(1): 550. [56] 柯世堂, 王硕, 赵永发, 等. 台风-浪-流耦合作用下海上10 MW级特大型风力机风荷载特性分析[J]. 振动工程学报, 2023(2):299-310. [57] KE S, WANG T, GE Y, et al. Wind-induced fatigue of large HAWT coupled tower-blade structures considering aeroelastic and yaw effects[J]. Structural Design of Tall and Special Buildings, 2018(9): e1467. [58] REN H, KE S, DUDHIA J, et al. Wind disaster assessment of landfalling typhoons in different regions of China over 2004—2020[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022(228): 105084. [59] MULIAWAN M J, KARIMIRAD M, GAO Z, et al. Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes[J]. Ocean Engineering, 2013(65): 71-82. [60] MICHAILIDES C, GAO Z, MOAN T. Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions[J]. Marine Structures, 2016(50): 35-54. [61] HU J, ZHOU B, VOGEL C, et al. Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters[J]. Applied energy, 2020(269): 114998. [62] REN N, MA Z, SHAN B, et al. Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions[J]. Renewable Energy, 2020(151): 966-974. [63] 赵永发, 柯世堂, 员亦雯, 等. 新型风浪联合发电浮式平台浮筒-立柱-浮子多尺度流场演化与荷载特性[J]. 太阳能学报, 2023(7): 370-379. [64] BACHYNSKI E E, MOAN T. Point absorber design for a combined wind and wave energy converter on a tension-leg support structure [C]//International Conference on Offshore Mechanics and Arctic Engineering, June 9-14, 2013. Nantes, France: American Society of Mechanical Engineers, 2013, 55423: V008T09A025. [65] GAO Z, MOAN T, WAN L, et al. Comparative numerical and experimental study of two combined wind and wave energy concepts[J]. Journal of Ocean Engineering and Science, 2016(1): 36-51. [66] KARIMIRAD M, KOUSHAN K. WindWEC: Combining wind and wave energy inspired by hywind and wavestar [C]//2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), October 14-17, 2016. Palermo, Italy: IEEE, 2016: 96-101. [67] 朱莹. 单桩基础风能-波浪能集成发电结构风浪联合分析[D].大连:大连理工大学, 2019. [68] 杨可新. 单桩基础及附属波浪能装置的水动力特性研究[D].大连:大连理工大学, 2022. [69] WANG Y, SHI W, MICHAILIDES C, et al. WEC shape effect on the motion response and power performance of a combined wind-wave energy converter[J]. Ocean Engineering, 2022(250): 111038. [70] WU H, ZHU F, YUAN Z. Effects of the WEC shape on the performance of a novel hybrid WEC-FOWT system[J]. Energy, 2024(288): 129907. [71] 陈淑玲, 胡天鸣, 马婧, 等. 一种浮式风浪能混合利用系统设计与运动响应研究[J]. 舰船科学技术, 2020(21):83-90. [72] ZHOU B, HU J, JIN P, et al. Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system[J]. Energy, 2023(265): 126314. [73] LEE C F, TRYFONIDIS C, ONG M C. Power performance and response analysis of a semi-submersible wind turbine combined with flap-type and torus wave energy converters[J]. Journal of Offshore Mechanics and Arctic Engineering, 2023(4): 042001. [74] RONY J S, KARMAKAR D. Coupled dynamic analysis of hybrid offshore wind turbine and wave energy converter[J]. Journal of Offshore Mechanics and Arctic Engineering, 2022(3): 032002. [75] RONY J S, KARMAKAR D. Performance of a hybrid TLP floating wind turbine combined with arrays of heaving point absorbers[J]. Ocean Engineering, 2023(282): 114939. |