《新能源科技》杂志社 ›› 2025, Vol. 6 ›› Issue (1): 1-13.doi: 10.20145/j.32.1894.20250101

• 特约专稿 •    下一篇

海上风-浪联合发电结构体系研究进展与未来挑战

柯世堂1, 毛竞竹1, 王伯洋1, 王文才1, 黄国庆2, 朱松晔3   

  1. 1.南京航空航天大学 土木与机场工程系,江苏 南京 211106;
    2.重庆大学 土木工程系, 重庆 400000;
    3.香港理工大学 土木及环境工程学系,香港 999077
  • 出版日期:2025-02-28 发布日期:2025-03-21
  • 作者简介:柯世堂(1982—),男,教授,博士;研究方向:结构风工程。keshitang@163.com.柯世堂,1982年11月生,博士研究生,南京航空航天大学教务处副处长,土木工程动力多灾害防护江苏高校重点实验室主任,博士生导师,二级岗教授。主要研究方向为风工程、结构抗风与风能利用。国家一级注册结构工程师,入选中组部国家“万人计划”领军人才、科技部中青年科技创新领军人才、教育部“长江学者”青年学者等计划。主持国家自然科学基金7项(含重点基金)、国家重点研发计划课题2项、江苏省杰出青年科学基金等20余项纵向课题,主持承担30余项国内外重大工程抗风咨询项目。发表期刊论文280余篇,主编论著4部,授权国际PCT专利2项、国家发明专利52项,登记软著13项,编制规范标准6部。担任《振动、测试与诊断》等6本期刊编委、《空气动力学学报》等5本期刊客座主编。获江苏省科技进步一等奖、广西科技进步一等奖、中国振动工程学会技术发明一等奖、中国振动工程学会科技进步一等奖、中国电力科学技术奖一等奖等多项奖励。
  • 基金资助:
    国家自然科学基金重点项目(52321165649)及面上项目(52078251)。

Research progress and future challenges of offshore wind-wave co-generation structure systems

KE Shitang1, MAO Jingzhu1, WANG Boyang1, WANG Wencai1, HUANG Guoqing1,2, ZHU Songye3   

  1. 1. Department of Civil and Airport Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
    2. Department of Civil Engineering, Chongqing University, Chongqing 400000, China;
    3. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Online:2025-02-28 Published:2025-03-21

摘要: “海上风电+”融合发展新模式是我国未来风电发展技术的制高点,风能和波浪能联合发电是实现“海上风电+”这一高技术战略性新兴产业的最重要形式之一,而风-浪联合发电结构体系的研发是实现该目标的重要支撑和建设基础。海上风-浪联合发电结构体系是由叶片、机舱、塔筒、浮筒、浮子、浮台和锚链组成的多柔-刚体混合多体动力学复杂体系,时常遭受海上极端的台风、波浪、海流等多灾害耦合作用,如何保障风-浪联合发电结构体系的结构安全强度和体系稳定性能,是其深海化和大型化发展面临的巨大挑战,亦被列为世界十大海洋科学问题和工程技术难题之一,成为国际风工程与结构工程领域的最前沿趋势与学科交叉研究热点。文章首先从浮式风力机结构体系和波浪能发电装置出发,分别概述了各自结构体系发展历程和研发现状;其次梳理了海上风-浪联合发电结构体系的概念设计理论与研发现状,着重介绍了风-浪联合发电混合结构体系的研究成果;最后从结构体系设计通用规范、双重非线性气动/水动荷载预测方法、体系降载减振新技术研究等方面提出未来挑战。

关键词: 海上风电+, 风-浪联合发电结构体系, 浮式风力机, 波浪能发电装置

Abstract: The “Offshore Wind Power+” integrated development model is regarded as the apex of future wind power technology advancements in China, with wind-wave co-generation being a crucial method for achieving this high-tech strategic emerging industry. The research and development of the wind-wave co-generation structure system form the essential technical support and foundational base for this goal. The system of wind-wave co-generation consists of a complex multi-body dynamic system comprising blades, nacelle, tower, buoy, floater, platform, and mooring chains, frequently subjected to the combined impacts of extreme typhoons, waves, and ocean currents. Ensuring the structural strength and stability of this system under such harsh offshore conditions is a significant challenge as it progresses towards deeper waters and larger scales. This issue has been recognized as one of the world’s top ten marine science and engineering challenges, becoming a forefront trend and an interdisciplinary research hotspot in international wind engineering and structural engineering fields. This essay first provides an overview of the development history and research status of floating wind turbine structure systems and wave energy conversion devices; secondly, it reviews the conceptual design theories and research progress of offshore wind-wave co-generation structure systems, emphasizing the research achievements of hybrid structural systems; finally, it addresses future challenges, particularly in areas such as general design norms for structural systems, dual nonlinear aerodynamic/hydrodynamic load prediction methods, and new technologies for system load reduction and vibration control.

Key words: offshore wind power+, wind-wave co-generation structure system, floating wind turbine, wave energy converter

中图分类号: