[1]ELATTAR E E,GOULERMAS J,WU Q H.Electric load forecasting based on locally weighted support vector regression[J].IEEE Transactions on Systems Man & Cybernetics,Part C:Applications & Reviews,2010(4):438-447. [2]HAO Q,DIPTI S.Short-Term load and wind power forecasting using neural network-based prediction intervals[J].IEEE Transactions on Neural Networks and Learning Systems,2014(2):303-315. [3]RUI Z,ZHAO Y D.Short-term forecasting of Australian National Electricity Market by an ensemble model of extreme learing machine[J].IET Generation Transmission & Distribution,2013(4):391-397. [4]SWASTI R K,IOSE L R.Forecasting the load of electrical power systems in mid- and long-term horizons:a review[J].IET Generation,Transmission & Distribution,2016(16):3971-3977. [5]XIA C,ZHAO Y D.Electricity price forecasting with extreme learning machine and bootstrapping[J].IEEE Transactions on Power Systems,2012(4):2055-2062. [6]李军,李青.基于回声状态网络的电力负荷预测研究[D].兰州:兰州交通大学,2015. [7]FREUND Y,SCHAPIRE R E.A decision-theoretic generation of on-line learning and an application to boosting[J].Journal of Computer and System Sciences,1997(1):119-139. [8]高云龙,潘金艳,吉国力,等.基于Boosting梯度下降理论的时间序列建模方法[J].中国科学:技术科学,2011(7):929-943. [9]寇鹏,高峰.几何转换boosting回归算法及其在高耗能企业负荷预测中的应用[J].系统工程理论与实践,2013(7):1880-1888. [10]FENG G,PENG K, LIN G,et al.Boosting regression methods based on a geometric conversion approach:Using svms based learners[J].Neurocomput-Ing,2013(3):67-87. [11]HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006(1-3):489-500. [12]毛力,王运涛.基于改进极限学习机的短期电力负荷预测方法[J].电力系统保护与控制,2012(20):140-144. [13]王保义,赵硕.基于云计算和极限学习机的分布式电力负荷预测算法[J].电网技术,2014(2):526-531. [14]李东辉,闫振林.基于改进流行正则化极限学习机的短期电力负荷预测[J].高电压技术,2016(7):2092-2099. [15]李军,李大超.基于优化核极限学习机的风电功率时间序列预测[J].物理学报,2016(13):1-10. |