Japan-Austria Joint Workshop on "ICT" October 18-19 2010, Tokyo, Japan

SECTET-

Model driven Security of Service Oriented Systems based on Security-as-a-Service

Basel Katt, Ruth Breu, Mukhtiar Memon and Michael Hafner

Research Group Quality Engineering
University of Innsbruck

Quality Engineering

Selected Projects

Quality Engineering Laura Bassi Lab Living Models for Collaborative Systems

Industry Partners

Slide3

Agenda

- Motivation
 - Service Oriented Systems
 - Challenges
- Healthcare Scenario
- SECTET: Model based configuration of Service Oriented Systems
 - Model Driven Security (MDS)
 - Security as a Service (SeAAS) Architecture
- Conclusion

Service Oriented Systems

- Independent partners offer and call services
- Collaboration across enterprises and systems
- New generation of cooperative applications
 - Electronic health record, traffic management, energy trading, etc.

Challenges

- Collaborative systems based on SOA
 - Dynamically composed, language and technology independent
 - Agile and dynamically evolving systems
- Standards only address basic security requirements
 - Solve these requirements at a low technical level
- Security enforcement at the service end points
 - Places significant processing burden on service nodes
 - Renders maintenance and management cumbersome

Goals

- The gap between domain experts and software engineers
- Maintainability and configurabl, ity of security services
 - Ability to re-configure after deployment due to requirement changes or mechanisms' updates
 - Support of multiple security architectures for each requirement
- Enforcement
 - Enforcing complex security requirements
 - Consistent enforcement of security policies in enterprise-level solutions
- Performance
 - Security services involve performance costly functions

Example – Distributed Electronic Health Record (EHR)

Example – Healthcare Scenario

- EHR represents a consolidated virtual medical record
 - Distributed across various care providers

Slide9

Example – Healthcare Scenario

Inter-organizational workflows

- Services that can be offered or called by each partner
- Functional interaction between different stakeholders (roles)
- Security requirements
 - Non-repudiation and authentication

SECTET – Model-Based Configuration of Service Oriented Systems

SECTET Methodology – Model Driven Security (MDS)

Traditional MDS approach

SECTET MDS approach

SECTET Model Driven Security Process

- Two procedures are considered in SECTET MDS approach
 - Architectural pattern refinement
 - Security policy model transformations
- Two artifacts are generated
 - Security policy configuration
 - Security service process configuration

Model Driven Security (MDS) – Benefits

- Integrate security concerns in the early stage of system development
- Enrich functional models with security extensions that represent abstract security policies
- Generate declarative security policies and process configurations
- Separate tasks between: domain experts, security experts and the system administration
- Support multiple security patterns for each requirement
- Enhance management and configurabilty of the architecture

Security Enhanced Functional Models

<<document>>

Referral

Slide15

Abstract Security Models Layer

Platform Specific

Architecture

Abstract

tokenType="SamlToken"

Authentication Policy AuthenticationPolicy Credential SecurityMechanism AuthConstraint Security Policy - bindingType - algorithmSuite - timeStamp protectionOrder PrimaryToken - signedParts TokenType - encryptedParts - TokenVersion SecondayToken - TokenType - TokenVersion AdditionalToken - TokenType - TokenVersion BrokeredAuthenticationPolicy: SecurityToken: Credential Binding:SecurityMechanism MessageProtection; AuthContraint; bindingType ="SymmertircBinding" algorithmSuite ="Basic256" timeStamp ="True" protectionOrder ="signBeforeEncrypting" signedParts="bodyAndHeader" encryptedParts="bodyAndHeader" InitiatorToken: PrimaryToken tokenType ="X509Token" tokenVersion = "WssX509V3TokenI0" SupportingToken: SecondaryToken tokenType="UserNameToken" tokenVersion="WssUsernameToken11"

Instant Security Policy

Model

Slide16

Model Deriven Security – Architectural Patterns

Security Pattern Refinement Example: Authentication

1) Platform-independent refinement to security architectural pattern

2) Platform-specific refinement to target architecture

Model Deriven Security – Security Policies

Runtime Platform – Model Transformations

Security Policy

Source Models

Transformation Templates

Generated Code

Slide19

Description of the Control of the

```
<wsp:Policy xmlns:wsp="http:// .... /policy"</pre>
<wsp:ExactlyOne>
<sp:AsymmetricBinding>
<sp:InitiatorToken>
<sp:X509Token sp:IncludeToken=".../AlwaysToRecipient">
<sp:WssX509V3Token10 />
</sp:InitiatorToken>
<sp:RecipientToken>
<sp:AlgorithmSuite>
<sp:TripleDesRsa15 />
<sp:IncludeTimestamp />
</sp:SignedEncryptedSupportingTokens>
<sp:SignedElements>
<sp:XPath xmlns:env=".../">//env:Body/*[1]</sp:XPath>
<sp:ContentEncryptedElements>
<sp:XPath xmlns:env="...e/">//env:Body/*[1]</sp:XPath>
</sp:ContentEncryptedElements>
</wsp:ExactlyOne>
</wsp:Policy>
```

Platform-specific Pattern architecture

```
The continue of the continue o
```

```
<bpws:process exitOnStandardFault="yes" name="NRP" >
<bpws:partnerLinks>
<bpws:partnerLink myRole="nro"</pre>
name="localNROLink"
partnerLinkType="tns:NRProcess"/>
</bpws:partnerLinks>
<bpws:invoke</pre>
operation="requestNRO"
partnerLink="remoteNROLink"
portType="tns:NRO"
inputVariable="evidenceRequest"/>
<bpws:receive</pre>
operation="receiveNRO"
partnerLink="localNRRLink"
portType="tns:NRR" variable="receiveEvidence">
 </bpws:sequence>
</bpws:process>
```

SECTET Methodology – SeAAS Reference Architecture

Features:

- Dedicated shared services in a security domain
- Decoupled from service endpoints
- SeAAS security compositions engine
- Out-of-bound protocol execution
- Message oriented integration with ESB
- WS-based Standards

Benefits

- Better performance
- Easy deployment/management
- Configurable security components
- Security service composition
- Loosely coupled components
- Extendable architecture

Complex Security Services Executions

- Security workflow for complex security service
- Security WS interface for Inter-Domain interactions

SECTET Methodology – SeAAS Implementation

• The delivery of security functionality over infrastructure components in a service oriented manner

SECTET – An Overview

Vision

"The systemic realization of security-critical interorganizational cooperations based on generic, composable security servcies."

Components

- •An extensible domain specific language
- •A reference architecture based on Security As a Service (SeAAS)
- •A multi-level transformation framework for Model Driven Security

From Platform Independent Models

Model Driven Security Process

3rd Step: Deploy Policies on Decentral Infrastructures

Abstract Patterns Specific Patterns

Security Policy

QUALITY ENGINEERING

SeAAS Infrastructure

Conclusion

- Collaborative systems based on SOA are heterogeneous, agile and dynamically evolving
- The best practice for SOA security is based on
 - Endpoint security
 - Traditional MDS approach to close the business-code gap is
 - Applied in one step
 - Inflexible and supports one security pattern
- Proposed SECTET framework is based on two main concepts
 - SeAAS methodology for the design of the reference architecture (RA)
 - Enhanced MDS methodology for the configuration of security services

Future Work

- Investigating further security services like security monitoring, identity management, and usage control
- Developing the formal foundation of the refinement process and security composition
- Deploying and testing an EHR system developed by our industrial partner, ITHicoserve

... Thank you for your attention! www. sectissimo.info

