http://www.chinalibs.net 2014/8/15
[作者] 张扬,崔晨阳
[单位] 中国人民公安大学, 北京大学
[摘要] Naive Bayes是一种基于概率的分类器,它用各个类别的先验概率和每个类别出现特定特征的条件概率来预测出现这些特征的个体的类别。针对当前“网络负面信息满天飞”的现状,本文提出了一种基于朴素贝叶斯模型的网络负面信息预警策略。与一般的文本分类不同,针对大规模网络碎片化信息的情感识别一方面对执行效率要求很高,另一方面主要关注有主观情感倾向的词。针对这些问题,我们做了相应的优化策略,如提取情感倾向专用停用词表,细化对否定词的处理等,并以2万条微博数据样本为例进行测试,实验证明这些策略在文本情感识别中具有较为理想的执行效率和准确率。
[关键词] 负面信息 情感分析 机器学习 朴素贝叶斯 舆情监测 预警
[刊名] 图书馆杂志
Naive Bayes是一种基于概率的分类器,它用各个类别的先验概率和每个类别出现特定特征的条件概率来预测出现这些特征的个体的类别。针对当前“网络负面信息满天飞”的现状,本文提出了一种基于朴素贝叶斯模型的网络负面信息预警策略。与一般的文本分类不同,针对大规模网络碎片化信息的情感识别一方面对执行效率要求很高,另一方面主要关注有主观情感倾向的词。针对这些问题,我们做了相应的优化策略,如提取情感倾向专用停用词表,细化对否定词的处理等,并以2万条微博数据样本为例进行测试,实验证明这些策略在文本情感识别中具有较为理想的执行效率和准确率。
引用本文:
张扬,崔晨阳.基于朴素贝叶斯模型的一种网络负面信息预警策略研究[DB/OL].[2025-05-16].http://www.chinalibs.net/ArticleInfo.aspx?id=361735.
温馨提示:
如果您的作品引用了本文,请您发邮件(leisun@chinalibs.net )告诉我们,我们会给您一个小小的惊喜哟!
——【北京雷速科技有限公司】